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Abstract

The tradeoff between spatial and temporal resolution is often used to increase data acquisition speed for dynamic MR imaging.

Reduction of the k-space sampling area, however, leads to stronger partial volume and truncation effects. A two dimensional prolate

spheroidal wave function (2D-PSWF) method is developed to address these problems. Utilizing prior knowledge of a given region of

interest (ROI) and the spatial resolution requirement as constraints, this method tailors the k-space sampling area with a matching

2D-PSWF filter so that optimal signal concentration and minimal truncation artifacts are achieved. The k-space sampling area is

reduced because the shape and size of the sampling area match the resolution posed by the non-rectangular shape of a convex ROI.

The 2D-PSWF method offers an efficient way for spatial and temporal tradeoff with minimal penalty due to truncation, and thus, it

promises a wide range of applications in MRI research.

� 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

Many methods have been proposed to increase the
temporal resolution for dynamic MR studies [1–9].

Because of the hardware limitations, and because the

threshold of neuro-stimulation by rapidly switching

gradients set an ultimate physical limit for imaging

acquisition rate, k-space sampling must often be econ-

omized to meet the demands for image resolution, sig-

nal-to-noise ratio (SNR), and acquisition speed for a

specific experiment. The keyhole technique exploits the
fact that the central region of k-space contributes to the

image intensity and contrast, while the peripheral re-

gions contribute to image resolution details [1]. Since the

dynamic variable in tissue perfusion and fMRI studies is

the image intensity, while the geometry and the anatomic

details of the image remain static, the keyhole technique

can significantly improve the temporal resolution in

these studies by sampling only the central k-space area

during dynamic data acquisition, and recycling the high

spatial frequency area from a reference full k-space im-
age [2]. Reducing the number of sampling points can also

be achieved with singular value decomposition [3,4] and

generalized series reconstruction [6] methods. In these

methods, a priori information (a high-resolution refer-

ence image) is incorporated with the reduced-sampling

data in order to maintain the spatial resolution of the

dynamic images. Reduction of k-space sampling can also

be achieved with multiple coil techniques such as SENSE
[7] and SMASH [8]. With multiple coil techniques, the

prior knowledge about RF field distributions, or image

sensitivity of the coils, are utilized for image construction

from under-sampled k-space data.

The trade-off between spatial and temporal resolution

is often used to increase data sampling speed required by

many applications [10–15]. Reducing image spatial res-

olution, however, leads to a stronger partial-volume
effect, which decreases the sensitivity to dynamic signals

such as BOLD contrast for detection of neuroactivities.

The origin of the problem is the disparity between the
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size and irregular geometry of the region of interest
(ROI), and the rectangular voxel produced by the fast

Fourier transform [16]. In order to solve this problem,

we present an alternative data acquisition and process-

ing approach that tailors the k-space sampling area ac-

cording to the size and shape of a convex ROI, and

creates a matching two-dimensional prolate spheroidal

wave function (2D-PSWF) filter [17–19] to optimally

reduce truncation effect. With this new approach, the
spatial information in reduced k-space data is used to

calculate the total image intensity of non-square ROIs

instead of a low-resolution image. In the 2D-PSWF

method, a reference image is utilized as a priori to de-

termine the features of the ROI. This method can be

used for tracking dynamic signals from non-square

ROIs with a reduced k-space sampling area with mini-

mal signal leakage. It can also be applied to conven-
tional square k-space as a post-processing method.

2. Theory

Consider a convex ROI, B, consisting of b pixels in

image-space. Our objective is to determine the optimal

sampling region, A, of a predetermined size a, which
maximizes the total signal over the region B in image-

space. We achieve this by designing a k-space sampling

region based on the size and shape of given B with a

matched two-dimensional filter that maximizes the

energy concentration in B.

For an arbitrarily shaped B in image-space, consider

a sub-region A of size a in k-space. We seek a function

gðkÞ associated with A that satisfies the following two
criteria:

1. It vanishes off A.

2. Its inverse Fourier transform, GðxÞ, has maximal sig-
nal concentration in B, i.e. the ratioR

B jGðxÞj
2
dxR

1 jGðxÞj2 dx
ð1Þ

is maximized over all possible functions for which cri-

terion (1) holds.

Now let A vary among all possible k-space regions of

a given size a. For each possible region we will obtain a
corresponding gðkÞ for which the above criteria hold.

Then, choose the region whose corresponding gðkÞ
makes the maximal concentration ratio in (2) as large as

possible.

Let us assume that f ðkÞ is the experimental sampling
function in k-space and F ðxÞ is its corresponding Fou-

rier transform (the image). According to Parseval’s

identity, we have

Z
1
F ðxÞG�ðxÞdx ¼

Z
1
f ðkÞg�ðkÞdk; ð2Þ

where ‘‘�’’ represents the complex conjugate operation
on a given function. The integral on the left-hand side of

Eq. (2) is the image convolved with GðxÞ, a function that
takes almost all its value inside of the ROI B and is

essentially 0 outside of B. This integral is the weighted

sum of the image over the ROI, which can be viewed as

a reasonable proxy for the sum of the signal over B. A

more stringent justification of this statement will come

later in this section. For now let us assume thatZ
B
F ðxÞdx /

Z
1
F ðxÞG�ðxÞdx ¼

Z
A
f ðkÞg�ðkÞdk: ð3Þ

As indicated above, the equation shows that the integral

of the signal intensity over B can be approximated using

a reduced area of k-space, k 2 A, since gðkÞ ¼ 0 outside

of A. Thus, if we are interested in obtaining the total

signal intensity over a given ROI in an image, the

sampling of k-space can be reduced to a region A. Using

Eq. (3) the image intensity over the ROI B can be cal-

culated directly from k-space area A.
Our problem consists of two parts:

(I) Finding the sampling region A, of size a, which

gives us the most information about a specific B.

(II) Finding the optimal gðkÞ, which is determined by

the choice of A and B.

These twoparts are closely intertwined. To calculate gðkÞ,
one needs the ROIB and the chosen sampling regionA as

input. The problem of finding gðkÞ is a 2D generalization
of the theory of prolate spheroidal wave functions

(PSWFs). The PSWF theory in one-dimension was de-

veloped by Slepian et al. [20–22]. A further review of

PSWF theory can be found in Percival and Walden [23].

Finding the simultaneous solution for A and gðkÞ is a
difficult mathematical problem. In theory, to find the

optimal sampling region A we need to calculate the cor-

responding 2D-PSWF filters for all possible sampling
schemes of a given size. It involves an exponential growth

inN computer searches for anN 	 N size image. To avoid

such an extremely computer-intensive search we use a

heuristic sampling scheme that has been proven by com-

puter searches to be nearly optimal [17]. For the purpose

of applying the 2D-PSWF theory to MRI data acquisi-

tion, the heuristic sampling region A and the corre-

sponding optimal filter gðkÞ can be calculated as follows.

2.1. Determining A, given B (Heuristic solution)

The nature of the Fourier transform does not allow

one to partially sample k-space and still obtain full in-

formation about a compact region in image-space. In

one dimension, the problem of finding the optimal

sampling region for a block of consecutive points in
image-space was shown by Donoho and Stark [24] to

consist of a block of consecutive points centered in the

middle of k-space. If one chooses to sample a larger

interval in k-space, then a finer interval of image-space
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can be effectively resolved. Similarly, if one chooses to
sample a shorter interval of k-space, one can only re-

solve coarser intervals in image-space. In the 2D case,

this inverse relationship must be applied to all the ori-

entations in the 2D plane to match the spatial frequency

requirement by the shape and size of the ROI in image-

space. Heuristically, this can be achieved by choosing A

with a shape that is rotated in-plane 90� from B. The

heuristic sampling region A, given a ROI B, can be
determined as described below.

1. Center B so that its center of mass lies in the center of

the image.

2. Define a region of k-space, H 0, whose coordinates co-
incide with those of B.

3. Define an auxiliary region, H, obtained by rotating

H 0 90�, i.e.
H ¼ fð�j; iÞ j ði; jÞ 2 H 0g: ð4Þ

4. The shape of A is determined by taking the union of

H and ð�HÞ to assure that A has a symmetric shape.

5. The region A is scaled to size a .

The criteria for choosing the size of the sampling

region a will be given later in this section.

2.2. Determining the optimal g(k), given A, and B

For a given A, gðkÞ is obtained by finding the func-

tion whose inverse Fourier transform maximizes Eq. (1).

With proper normalization of GðxÞ we can assume thatZ
1
jGðxÞj2 dx ¼ 1: ð5Þ

The problem becomes finding the solution to the follow-

ing equation, k, subject to the above constraint on GðxÞ:

k ¼ max

Z
B
jGðxÞj2 dx ¼ max

X
B

GðxÞG�ðxÞ: ð6Þ

To simplify the calculation, we will write the Fourier

transform in matrix form. Let T be the Nd 	 Nd discrete
Fourier transform matrix with elements

expf�i2pðx; kÞ=Ng=Nd=2; ð7Þ
where d is the dimension of k-space. Let T�1 denote the

inverse Fourier transform operator. Let g and G be the
vectors of gðkÞ and GðxÞ, respectively. Using this nota-

tion, we can rewrite the sum in Eq. (6) as follows:X
B

jGðxÞj2 ¼ ðG;GÞB ¼ ðT�1g;T�1gÞB

¼ ðIBT�1IAg; IBT
�1IAgÞNd

¼ ðg; IATIBT�1IAgÞNd : ð8Þ

In the above formulas, IAT is a a	 Nd matrix consisting

of a rows of the matrix T that correspond with elements

in the region A, the matrix IBT
�1 is similarly defined as

the b rows of the matrix T�1 that correspond with ele-
ments in the ROI B, and the vector IAg is defined as the

component of the vector g which correspond to A. Let
us define the PSWF operator as

KA;B ¼ IATIBT�1IA; ð9Þ
KA;B is an a	 a matrix with elements

KA;Bðk0; kÞ ¼
1

Nd

X
x2B

exp f � 2piðx; k� k0Þ=Ng: ð10Þ

Written in matrix form, the problem becomes solving

the equation

k ¼ maxfgþKA;Bgg; ð11Þ

where ‘þ’ represents a transpose operation of a matrix.

It is well known that the solution to this problem is the

largest eigenfunction of the matrix KA;B. Since for all

possible situations in MRI, b � a will hold, it is favor-

able to express KA;B in image-space in order to reduce the

matrix size. The PSWF operator can be expressed in

image-space as a b	 bmatrix by simple manipulation of
Eq. (11),

kg ¼ KA;Bg ¼ IATIBT�1IAg: ð12Þ
Applying IBT

�1 to both sides of the equation we obtain

kIBT
�1IAg ¼ IBT�1IATIBT

�1IAg: ð13Þ
Let

w ¼ IBT�1IAg ð14Þ
and

KB;A ¼ IBT�1IATIB; ð15Þ
then Eq. (13) becomes

kw ¼ KB;Aw: ð16Þ
The operator KB;A, the PSWF operator expressed in

image-space, is a b	 b matrix with elements

KB;Aðx0; xÞ ¼
1

Nd

X
k2A

exp 2pi x
��

� x0; k
�
=N

�
; ð17Þ

where the image-space coordinates x, x0 2 B.
Because KB;A is a positive-definite matrix, the eigen-

values, kj; jP 1 of this matrix are all non-negative. In

fact, we have:

1P k1 P k2 P � � � P kb > 0: ð18Þ
If wj ¼ IBwj are the orthonormal eigenvectors of

KB;A, then IATwj are the orthogonal eigenvectors of KA;B.

Since

IATwj

�� ��2 ¼ ðwj;KB;AwjÞ ¼ kj; ð19Þ

we have that

gj ¼ IATwj=
ffiffiffiffi
kj

p
: ð20Þ

Also

Gj ¼ T�1gj ¼ T�1IATwj=
ffiffiffiffi
kj

p
; ð21Þ
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which gives us

IBGj ¼
ffiffiffiffi
kj

p
wj: ð22Þ

The eigenvalue kj is equal to the fraction of the total

signal intensity in B calculated according to Eq. (1) us-

ing the corresponding eigenfunction wj. This maximum

fraction of the total signal in B is equal to k1. Hence, the
largest eigenfunction w1 is the sought-after function.

Once gðkÞ is obtained, the total signal over the ROI B
can be calculated using Eq. (3):
Z
B
F ðxÞdx /

X
k2A

f ðkÞg�ðkÞ: ð23Þ

This formula can be justified further with the aid of the

prolate spheroidal eigenfunctions. Since the eigenfunc-

tions of KB;A form an orthonormal and complete base,

we can write the integral of F ðxÞ over B as,
Z
B
F ðxÞdx ¼

X
j

Z
B
F ðxÞwj dx

Z
B

wj dx: ð24Þ

In the above equation, all the terms for jP 2 are small

in comparison to the first term and can be ignored [17].

The reason is that the eigenfunctions wj ðjP 2Þ oscillate
about zero in B, causing the integral of wj over B to be

insignificantly small. Thus,Z
B
F ðxÞdx �

Z
B
F ðxÞw1 dx

Z
B

w1 dx

¼
Z
B
F ðxÞG1ðxÞdx

Z
B
G1ðxÞdx=k1: ð25aÞ

Since G1ðxÞ is essentially zero outside of B for k � 1, and

g1ðxÞ is zero outside of A, we haveZ
B
F ðxÞdx �

Z
N2

F ðxÞG1ðxÞdx
Z
B
G1ðxÞdx=k1

¼
Z
A
f ðkÞg1ðkÞdk

Z
B
G1ðxÞdx=k1: ð25bÞ

Thus, the total signal over B can be approximately

evaluated using Eq. (23).

The largest eigenvalue, k1, increases and eventually

approaches one as the sampling area of k-space in-
creases. From Eqs. (1) and (5), (6), the physical meaning

of eigenvalue k is the fractional signal of B calculated

from the reduced k-space area A with the PSWF filter.

The signal leakage of the filter can be estimated simply

by 1� k. Thus, the eigenvalue k is a quantitative mea-

sure of the corresponding filter performance.

In choosing the number of sampling points, a, the

condition k2 � k1 ffi 1 should be satisfied. For the two-
dimensional case (d ¼ 2), the results from a computer

search have indicated that this requirement leads to a

simple relationship:

a ¼ 3N 2=b; ð26Þ

where b is the size of the ROI B and N 2 is the size of the
image. This relationship offers a practical lower limit for

choosing a.

In summary, for a given ROI B in image-space, the

reduced sampling area A in k-space is determined first

with the approach described above. The PSWF operator

corresponding to A and B, KA;B, can then be con-

structed. Subsequently, a 2D filter over A is obtained by

calculating the largest eigenfunction, g1ðkÞ, of KA;B. The
performance of the filter in calculating the total intensity

in B, depends on the size and shape of B. The best results

of this method are obtained if B is convex. For non-

convex B, g1ðkÞ may lead to significant signal leakage.

This problem and its solutions are discussed with dem-

onstrations in Section 4.

3. Methods

The 2D-PSWF method was implemented in IDL

(Research systems, Boulder, CO 80301, USA) on an

AIX workstation. The experimental MRI data were

acquired on a MEDSPEC S300 3.0 T research whole

body imager (Bruker Instruments, Karlsruhe, Germany)

with a quadrature head coil. For fMRI studies, three
healthy volunteers (aged 25–35 years, two male and one

female) participated in the study with consent from each

subject and approval by the institutional review board.

The T �
2-weighted images from six oblique axial slices

along the calcarine sulcus were acquired using an echo

planar imaging (EPI) sequence with TR 1000ms, TE

40ms, flip angle 90�, field of view 250	 250mm2, slice

thickness 5mm, matrix 64	 64, and acquisition band-
width 143 kHz, while the left lens of a pair of custom-

made goggles flashing at 7.8Hz were turned on for 5 s

for visual stimulation (five images) and off for 35 s for

baseline (35 images). Each visual stimulation run was

repeated four times with an acquisition of 160 images

from each slice. The switching of the goggles was con-

trolled by a Grass S10VS Miniature Visual Stimulator

(Astro-Med, West Warwick, RI, USA). The fMRI ac-
tivation map was obtained with the Stimulate software

[25] by correlating the time-course signal intensity with

the stimulation paradigm.

To validate our method experimentally, ROI B was

selected as a circular region containing 21 pixels in the

visual cortex from the fMRI activation map. In this

case, the heuristic shape of reduced k-space area A was

also circular with 673 points. The temporal changes of
the total signal from B were calculated using 2D-PSWF

and conventional full k-space methods. To compare the

two methods without any possible interference of ex-

perimental variations during acquisitions, the same full

k-space data were used for the 2D-PSWF method by

discarding the data points outside area A. The 2D-

PSWF for A was then obtained with k1 ¼ 0:968.
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Subsequently, the integrals of the signal intensity in B of
the time-course images were calculated using the 2D-

PSWF from the reduced k-space.

Following the procedure for keyhole method by Gao

et al. [2], the ‘‘high resolution dynamic’’ k-space data

were produced by replacing the data outside the central

square area circumscribing A (keyhole) with those from

the last image of each baseline period. The high-

resolution dynamic images were obtained by Fourier
reconstruction of the resultant k-space data, and the

time-course signal over B in image-space was calcu-

lated.

4. Results

In this section, a computer experiment is described to
illustrate the concepts and mathematical procedure of

the 2D-PSWF method. An application to fMRI is

demonstrated.

4.1. Computer phantom

Fig. 1 shows the computer phantom images used in

the experiment. The phantom in Fig. 1a is a 128	 128
image containing an ellipse with 7259 points. The signal

intensity inside and outside the ellipse is set to 1 and 0,

respectively. To simulate a fMRI dynamic process, this

image is recreated 64 times with a 5% signal intensity

increase during ‘‘activation’’ in a small elliptical area,

B, with 100 points as shown in Fig. 1b. An image is

considered ‘‘on’’ if the signal intensity in B is 1.05,

otherwise it is considered ‘‘off.’’ A boxcar paradigm
consists of eight cycles of on-off periods. Both activa-

tion and baseline periods consist of four images. A 5%

white noise is added to each of the 64 images, as shown

in Fig. 1c.

4.2. The k-space sampling area A

The 64 images are transformed into k-space for ap-

plication of the 2D-PSWF method to measure the dy-

namic signal change in the given ROI, B. To illustrate

the relationship between B and A, Fig. 2a shows an

image with the signal intensity in B set to 1 and the rest

to zero, which will be denoted as a function vB. Ac-
cording to part I and Eq. (4) in the theory section, the
k-space sampling region A is chosen heuristically as

shown in Fig. 2b with 491 points. The size of A is chosen

using the relationship in Eq. (26). This relationship sets

a lower bound for the size of A. Below this value, there

would be a significant SNR loss in calculating the total

signal intensity in B. This can be illustrated in Fig. 2c–d.

The heuristic sampling area coincides with the main lobe

of the Fourier transform of vB. The main lobe around
the center of the k-space contributes to the overall image

signal intensity. Thus, one should at least sample the

main lobe of the Fourier transform of vB to avoid a

significant signal loss penalty. Fig. 3 shows a plot of the

first two eigenvalues as a function of the sample size A

with a given B. As the sample size increases, the first

eigenvalue quickly increases and approaches one at

about 500 points. This indicates that a reduction of the
sampling area below approximately 500 points is not

Fig. 1. Elliptical phantom images. (a) Image without activation. (b)

Image with activation in B. (c) Image with activation in B and 5%

white noise.

Fig. 2. (a) The ROI B, consisting of 100 points. (b) The k-space

sampling region A with 491 points. (c) The inverse Fourier transform

of vB, a function which takes the value one inside of B and zero oth-

erwise. (d) The sampling region A superimposed on the inverse Fourier

transform of vB.
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advisable, as it will lead to signal loss due to a stronger

truncation effect.

Our theoretical description of the PSWF method has

been presented mostly in k-space. However, it is more

straightforward to visualize the impact of sampling size

a on the total signal intensity from B by the eigenfunc-

tion plots expressed in the image-space. Fig. 4a shows
the plots of the 1st eigenfunction in image-space with

three different sampling sizes, approximately 1/10, 1/20,

and 1/40 of the total number of points of the original

image (16,384 points). For a ¼ 1635, the eigenvalue is

up to 0.9996 and the signal distribution is highly fo-

cused, indicating that the leakage of energy from B is

insignificant with 1/10th of the original sampling size.

This would lead to a significant reduction of the data

acquisition time. With sampling size a ¼ 417, smaller
than the lower bound found with Eq. (26), the eigen-

value reduces to 0.914. Under such conditions the signal

intensity distribution starts to show the truncation effect

with an obviously broadened center peak and ripples in

an extended area. Thus, the sampling area with size

a ¼ 1635 is used for the subsequent steps in the simu-

lated fMRI experiment.

4.3. Eigenvalues and eigenfunctions

After determination of A for the given B, KB;A is

constructed using Eq. (16) and its eigenvalues and ei-

genfunctions can be obtained. Fig. 4b shows three ei-

genfunctions corresponding to k1; k3; and k5 with size

a ¼ 931. The 1st eigenfunction is compact in B, ren-

dering the largest energy concentration fraction (0.993)
in B, while the 3rd and 5th eigenfunctions are spread out

to more extended areas, resulting in a decrease in the

corresponding eigenvalue. As indicated in Eq. (18),

higher eigenfunctions lead to even smaller eigenvalues.

Thus, the 1st eigenfunction is the most suitable choice

for gðkÞ.

4.4. Calculation of the signal intensity in B with g(k)

Once gðkÞ is obtained, the total signal intensity from
B can be evaluated directly from the reduced k-space

area using Eq. (3). The time-course signal intensity plots

that simulate a fMRI paradigm are shown in Fig. 5. To

validate our theory, the total signal intensity from full k-

space is also calculated by direct integration over B in

the phantom images and plotted in dotted lines in Fig. 5.
It can be seen in Fig. 5a that with a 10-fold reduction in

Fig. 3. The first (bold) and second (dashed) eigenvalues plotted as a

function of the sample size a of given ROI B in Fig. 1.

Fig. 4. (a) The plots of the first eigenfunction vs. size a of A. (b) The plots of the first, third, and fifth eigenfunctions with a ¼ 931. All eigenfunction

plots are expressed in image-space for a straightforward visualization of the characteristics of PSWFs.
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sampling of k-space area, the differences in signal

intensity, and its temporal variation between the

2D-PSWF and full k-space methods, are well within the
standard deviation of the noise. For comparison pur-

poses, a corresponding signal intensity plot using the

keyhole method is shown in Fig. 5b. The sampling re-

gions are kept the same for both 2D-PSWF and keyhole

methods. The activation contrast using the keyhole

method, however, is reduced by 20%. Thus, the reduc-

tion in k-space sampling area with 2D-PSWF method

can substantially increase the temporal resolution
without significant SNR penalty.

4.5. Application to experimental data

To validate the theoretical analysis and computer

modeling results, the utility of the 2D-PSWF was tested

experimentally with fMRI using visual stimulation.

Fig. 6 shows time-course plots from an activated region
in the visual cortex of a circular shape containing 21

pixels. The solid line in the plot is obtained using the

2D-PSWF method from a reduced k-space with a cir-

cular shape consisting of 673 points with corresponding

k1 ¼ 0:968. The dotted line in the plot is the signal in-

tensity from B using full k-space ð128	 128Þ time-

course data. With about 1/8 of the full k-space data, the

temporal signal intensity changes are very well preserved
by the 2D-PSWF method. The Z-scores are 3.46 for full

k-space and 3.88 for reduced k-space with the 2D-PSWF

method. Thus, with our method, such a reduction of

k-space sampling produces no significant change in the

detection of the fMRI signal. The reduction of k-space

sampling area can be used to increase the temporal

resolution for a known activated area. The temporal

behavior of the activation signals is important for

studying brain function and the associated hemody-

namics with MRI. This method is an efficient way to
tradeoff spatial resolution within a given ROI for tem-

poral resolution.

5. Discussion

Due to hardware limitations, the sampling of k-space

must be economized for dynamic MRI studies. In our
method, the reduction of k-space sampling is realized by

trading off spatial resolution. However, unlike the key-

hole technique, a reference image is utilized a priori to

determine the feature of a ROI. As seen in Fig. 1, the

spatial frequency distribution of an asymmetric ROI is

anisotropic in k-space. The isotropic reduction of the

sampling of high spatial frequency regions sacrifices the

SNR from a given ROI. Tailoring the sampling region
and matching the 2D-PSWF filter to the shape and size

of a given ROI, allows us to optimize the reduction in k-

space sampling with minimal SNR penalty. The non-

square shaped ROI reduces the signal leakage outside

the ROI, which also improves the contrast-to-noise ratio

(CNR). Partial volume effect is a serious problem in

chemical shift imaging. Thus, this method has promising

applications in chemical shift imaging to reduce the
spectral contamination due to the partial volume and

truncation effects.

From a practical point of view, a reliable estimate of

the size and shape of the ROI B is important because the

rest of the mathematical treatment on which it is based.

A reference image with high spatial resolution can be

used to determine ROI B prior to the dynamic experi-

ment. In choosing the size of the ROI, tradeoffs must be

Fig. 6. The time-course signal intensities over an activated ROI in

visual cortex consisting of 21 points using the full k-space (dotted line)

and the 2D-PSWF method with 1/8 of the k-space area (solid line).
Fig. 5. The time-course signal intensities over B using the 2D-PSWF

method (a) and the keyhole method with same number of points (b).

The signal intensity with full k-space sampling is plotted in dotted lines

for comparison. The signal intensity difference between on and off

periods is essentially the same for the 2D-PSWF method and is re-

duced by 20% for the keyhole method.
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made among SNR, the reduction of k-space sampling,
and partial volume effects. In practice, shapes of ROI

are often curved in 3D rather than in 2D. This method

will be eventually extended to 3D, in which case its

advantages become more significant.

A 2D-PSWF filter calculated for a specific B can be

used for all its translationally shifted ROIs in the image-

space. An alternative ROI, B, can be obtained by

shifting BðxÞ to Bðxþ sÞ in image-space, where s is a
displacement vector. The corresponding filter, G0, for
this new region can be calculated by taking

G0ðxÞ ¼
X
k2A

eiðs�xÞ;kgðkÞ; ð27Þ

which is equivalent to the well-known shift theorem in

Fourier analysis. Thus, A and the associated gðkÞ can be
used for calculation of any ROI with the same shape and
size. Therefore, having prior knowledge of the exact

location of the ROI is of less importance, as one can just

shift the ROI slightly if needed during post-processing.

The 2D-PSWF can be applied to conventionally

acquired k-space data as a low-pass filter for post-

processing. However, there is an essential difference

between the 2D-PSWF and a conventional low-pass

filter. The 2D-PSWF filter can be tailored to match the
anisotropy of the spatial frequency distribution of an

image feature, and thus provides more versatilities and

efficiency in filtering. As we have demonstrated in Fig. 5,

application of the 2D-PSWF filter enhanced the CNR of

the fMRI data from the ROI.

In the above discussions, B is assumed to be convex.

For a non-convex ROI, the 2D-PSWF method can be

applied by either splitting the ROI into numerous
smaller convex ROIs, or in some cases by using a larger

convex shape and subtracting the parts that are not in-

cluded in the ROI. To illustrate the latter case, consider

a non-convex ROI of Shape S1 as shown in Fig. 7. Shape
S1 can be obtained by subtracting the Shape S3 from

Shape S2. Since the two ROIs are convex, the total signal
intensities from Shape S2 and S3, IS2, and IS3, can be

calculated separately using the 2D-PSWF method. Be-
cause the calculations in the 2D-PSWF method are

linear operations, the total signal intensity from Shape
S1 is IS1 ¼ IS2 � IS3. Thus, with such an approach, the

2D-PSWF method can be effectively applied to a non-

convex case. In this scenario, the sampling area A is

determined by the smaller ROI S3.

6. Conclusion

The 2D-PSWF method addresses the issues inherent

in the fast Fourier transform, such as partial volume

effect due to the rectangular voxel shape, and the inverse

relationship between image resolution and k-space

sampling area (temporal resolution). These problems are

frequently encountered in rapid imaging and chemical

shift imaging. This method uses the prior knowledge of

a given ROI and the temporal resolution requirement to
design a reduced sampling area of k-space with a mat-

ched 2D-PSWF filter such that optimal signal concen-

tration and minimal truncation artifacts are achieved. In

this method, the k-space sampling area is optimally re-

duced because it matches the anisotropy in resolution

posed by the non-rectangular shape of a given ROI. The

2D-PSWF method offers an efficient way for spatial and

temporal tradeoff with minimal penalty due to trunca-
tion, and thus it promises a wide variety of applications

in MRI research.
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